B. Math. III - Mid-Term Examination

Introduction to Differential Geometry

September 11, 2009

1. (Euler's theorem for homogeneous functions) Let S be an open subset of \mathbb{R}^n , and let f be a real valued function defined on S such that $f(\lambda x) = \lambda^p f(x)$ for every real λ and for all x in S for which $\lambda x \in S$. If f is differentiable at x, show that

$$x \cdot \nabla f(x) = pf(x).$$

(Hint: look at $g(\lambda) = f(\lambda x)$)

- 2. Define the vector product of two vectors in \mathbb{R}^3 . Prove that the norm of the vector product of the two vectors u and v is the area of the parallelogram generated by them.
- 3. (*Viviani's curve*) Show that $\gamma(t) = (\cos^2 t \frac{1}{2}, \sin t \cos t, \sin t)$ is a parametrisation of the curve of intersection of circular cylinder of radius $\frac{1}{2}$ and axis the z-axis with sphere of radius 1 and center $(-\frac{1}{2}, 0, 0)$.
- **4.** Compute the torsion τ and curvature κ of the Viviani's curve given above and verify that:

$$\frac{\tau}{\kappa} = \frac{d}{ds}(\frac{\dot{\kappa}}{\tau \kappa^2}).$$

5. Show that the ellipse

$$\gamma(t) = (a\cos(t), b\sin(t)),$$

where a and b are positive constants, is a simple closed curve and compute the area of its interior.

- **6.** Find the equation of the tangent plane of the following surface patches at the indicated points:
 - (1) $\sigma(u, v) = (u, v, u^2 v^2)$ at (1, 1, 0).
 - (2) $\sigma(r,\theta) = (r\cosh\theta, r\sinh\theta, r^2)$ at (1,0,1).